Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474875

ABSTRACT

The type and composition of food strongly affect the variation and enrichment of the gut microbiota. The gut-microbiota-spleen axis has been developed, incorporating the spleen's function and maturation. However, how short-chain fatty-acid-producing gut microbiota can be considered to recover spleen function, particularly in spleens damaged by changed gut microbiota, is unknown in geese. Therefore, the gut microbial composition of the caecal chyme of geese was assessed by 16S rRNA microbial genes, and a Tax4Fun analysis identified the enrichment of KEGG orthologues involved in lipopolysaccharide production. The concentrations of LPS, reactive oxygen species, antioxidant/oxidant enzymes, and immunoglobulins were measured from serum samples and spleen tissues using ELISA kits. Quantitative reverse transcription PCR was employed to detect the Kelch-like-ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), B cell and T cell targeting markers, and anti-inflammatory/inflammatory cytokines from the spleen tissues of geese. The SCFAs were determined from the caecal chyme of geese by using gas chromatography. In this study, ryegrass-enriched gut microbiota such as Eggerthellaceae, Oscillospiraceae, Rikenellaceae, and Lachnospiraceae attenuated commercial diet-induced gut microbial alterations and spleen dysfunctions in geese. Ryegrass significantly improved the SCFAs (acetic, butyric, propionic, isovaleric, and valeric acids), AMPK pathway-activated Nrf2 redox signaling cascades, B cells (B220, CD19, and IgD), and T cells (CD3, CD4, CD8, and IL-2, with an exception of IL-17 and TGF-ß) to activate anti-inflammatory cytokines (IL-4 and IL-10) and immunoglobulins (IgA, IgG, and IgM) in geese. In conclusion, ryegrass-improved reprogramming of the gut microbiota restored the spleen functions by attenuating LPS-induced oxidative stress and systemic inflammation through the gut-microbiota-spleen axis in geese.


Subject(s)
Gastrointestinal Microbiome , Lolium , Gastrointestinal Microbiome/physiology , Kelch-Like ECH-Associated Protein 1 , Lipopolysaccharides , Spleen , Dysbiosis , RNA, Ribosomal, 16S , NF-E2-Related Factor 2 , Diet , Cytokines , Anti-Inflammatory Agents , Immunoglobulins
2.
Food Chem X ; 19: 100815, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780297

ABSTRACT

The effects of alfalfa leaf meal (ALM) on the meat quality of finishing pigs are largely unknown. Here, we investigated the effects of ALM diet on meat quality by replacing 0%, 25%, 50%, and 75% of soybean meal in the diet of finishing pigs, respectively. The findings showed that 25% ALM diet increased the IMF, cooked meat rate, a* and antioxidant capacity of longissimus dorsi (LD), improved amino acid composition, increased MUFA content, and increased LD lipid synthesis and mRNA expression of antioxidation-related genes. At the same time, ALM diet altered serum lipid metabolism (TG, FFA). Correlation analysis showed that antioxidant capacity was positively correlated with meat quality. In addition, metabolomic analysis of LD showed that the main metabolites of 25% ALM diet altered stachydrine and l-carnitine were associated with meat quality and antioxidant capacity. In conclusion, ALM replacing 25% soybean meal diet can improve the meat quality of pigs.

3.
Microbiol Spectr ; 11(1): e0241622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36507700

ABSTRACT

With increasing demand for high-quality pork, development of green and healthy feed for finishing pigs is urgently needed. In this study, the effects and mechanisms of mulberry and paper mulberry silages on growth performance, meat quality, and intestinal health of finishing pigs were explored. Intestinal microbiota were profiled, and microbially produced short-chain fatty acids (SCFAs) were measured. The average daily gain (ADG) and feed conversion rate (FCR) with mulberry and paper mulberry silages were not significantly different from those of the control. Meat quality as measured by pork marbling and fatty acids in the longissimus dorsi was better with mulberry silage. The highest concentration of SCFAs was also with mulberry silage. According to 16S rRNA sequencing, Clostridium_sensu_stricto_1, Terrisporobacter, and Lachnospiraceae, which are important in SCFA production, were biomarkers of mulberry silage. PICRUSt functional analysis of intestinal microbes indicated that galactose metabolism, starch and sucrose metabolism, and carbohydrate digestion and absorption decreased significantly in silage treatments but increased in the control. Correlations between intestinal microbes and SCFAs and fatty acids indicated Clostridium_sensu_stricto_1, Terrisporobacter, and Lachnospiraceae were closely associated with SCFA and fatty acid contents. The results indicated that mulberry silage could increase SCFA content through shaping intestinal microbes to affect the deposition of fatty acids, which laid a solid theoretical foundation for improving pork quality. IMPORTANCE To avoid competition between people and animals for food, it is essential to develop nontraditional feeds. In this study, the effects of the silages of the unconventional feed resources mulberry and paper mulberry on meat quality of finishing pigs were examined. With mulberry silage in the diet, meat quality improved as indicated by meat color, marbling score, and beneficial fatty acids in the longissimus dorsi muscle. Pigs fed mulberry silage had the highest concentrations of short-chain fatty acids (SCFAs), and 16S rRNA sequencing identified Clostridium_sensu_stricto_1, Terrisporobacter, and Lachnospiraceae as biomarkers, which are important in SCFA production. Functions of intestinal microbes in the two silage groups primarily involved amino acid metabolism and SCFA production. Correlations between intestinal microbes and SCFAs and fatty acids indicated that Clostridium_sensu_stricto-1, Terrisporobacter, and Lachnospiraceae were closely associated with SCFA contents in the intestine and fatty acids in the longissimus dorsi.


Subject(s)
Gastrointestinal Microbiome , Silage , Swine , Animals , Silage/analysis , RNA, Ribosomal, 16S/genetics , Animal Feed/analysis , Diet/veterinary , Meat , Fatty Acids/metabolism , Fatty Acids, Volatile
4.
Front Immunol ; 13: 1041070, 2022.
Article in English | MEDLINE | ID: mdl-36569878

ABSTRACT

Introduction: Diet strongly affects gut microbiota composition, and gut bacteria can influence the intestinal barrier functions and systemic inflammation through metabolic endotoxemia. In-house feeding system (IHF, a low dietary fiber source) may cause altered cecal microbiota composition and inflammatory responses in meat geese via increased endotoxemia (lipopolysaccharides) with reduced intestinal alkaline phosphatase (ALP) production. The effects of artificial pasture grazing system (AGF, a high dietary fiber source) on modulating gut microbiota architecture and gut barrier functions have not been investigated in meat geese. Therefore, this study aimed to investigate whether intestinal ALP could play a critical role in attenuating reactive oxygen species (ROS) generation and ROS facilitating NF-κB pathway-induced systemic inflammation in meat geese. Methods: The impacts of IHF and AGF systems on gut microbial composition via 16 sRNA sequencing were assessed in meat geese. The host markers analysis through protein expression of serum and cecal tissues, hematoxylin and eosin (H&E) staining, localization of NF-қB and Nrf2 by immunofluorescence analysis, western blotting analysis of ALP, and quantitative PCR of cecal tissues was evaluated. Results and Discussion: In the gut microbiota analysis, meat geese supplemented with pasture showed a significant increase in commensal microbial richness and diversity compared to IHF meat geese demonstrating the antimicrobial, antioxidant, and anti-inflammatory ability of the AGF system. A significant increase in intestinal ALP-induced Nrf2 signaling pathway was confirmed representing LPS dephosphorylation mediated TLR4/MyD88 induced ROS reduction mechanisms in AGF meat geese. Further, the correlation analysis of top 44 host markers with gut microbiota showed that artificial pasture intake protected gut barrier functions via reducing ROS-mediated NF-κB pathway-induced gut permeability, systemic inflammation, and aging phenotypes. In conclusion, the intestinal ALP functions to regulate gut microbial homeostasis and barrier function appear to inhibit pro-inflammatory cytokines by reducing LPS-induced ROS production in AGF meat geese. The AGF system may represent a novel therapy to counteract the chronic inflammatory state leading to low dietary fiber-related diseases in animals.


Subject(s)
Endotoxemia , Gastrointestinal Microbiome , Animals , Lipopolysaccharides/pharmacology , Alkaline Phosphatase , Geese , NF-kappa B , Endotoxemia/metabolism , Reactive Oxygen Species , NF-E2-Related Factor 2/metabolism , Diet , Inflammation/microbiology , Meat
5.
Appl Microbiol Biotechnol ; 106(11): 4187-4198, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35604439

ABSTRACT

In recent years, whole-plant corn silage has been widely used in China. Roughage is an important source of nutrition for ruminants and has an important effect on rumen microbiota, which plays an important role in animal growth performance and feed digestion. To better understand the effects of different silages on rumen microbiota, the effects of whole-plant corn silage or corn straw silage on growth performance, rumen fermentation products, and rumen microbiota of Simmental hybrid cattle were studied. Sixty healthy Simmental hybrid cattle were randomly divided into 2 groups with 6 replicates in each group and 5 cattle in each replicate. They were fed with whole-plant corn silage (WS) diet and corn straw silage (CS) diet respectively. Compared with corn straw silage, whole-plant corn silage significantly increased daily gain and decreased the feed intake-to-weight gain ratio (F/G) of beef cattle. Whole-plant corn silage also decreased the acetic acid in the rumen and the acetate-to-propionate ratio (A/P) compared with corn straw silage. On the genus level, the relative abundance of Prevotella_1 was significantly increased while the relative abundance of Succinivibrionaceae_UCG-002 was decreased in cattle fed whole-plant corn silage compared with those fed corn straw silage. Prevotella_1 was positively correlated with acetic acid and A/P. Succinivibrionaceae_UCG-002 was positively correlated with propionic acid and butyric acid, and negatively correlated with pH. Feeding whole-plant corn silage improved amino acid metabolism, nucleotide metabolism, and carbohydrate metabolism. Correlation analysis between rumen microbiota and metabolic pathways showed that Succinivibrionaceae_UCG-002 was negatively correlated with glycan biosynthesis and metabolism, metabolism of co-factors and vitamins, nucleotide metabolism, and translation while Prevotellaceae_UCG-003 was positively correlated with amino acid metabolism, carbohydrate metabolism, energy metabolism, genetic information processing, lipid metabolism, membrane transport, metabolism of cofactors and vitamins, nucleotide metabolism, replication and repair, and translation. Ruminococcus_2 was positively correlated with amino acid metabolism and carbohydrate metabolism. Feeding whole-plant corn silage can improve the growth performance and rumen fermentation of beef cattle by altering rumen microbiota and regulating the metabolism of amino acids, carbohydrates, and nucleotides. KEY POINTS: • Feeding whole-plant corn silage could decrease the F/G of beef cattle • Feeding whole-plant corn silage improves rumen fermentation in beef cattle • Growth performance of beef cattle is related to rumen microbiota and metabolism.


Subject(s)
Microbiota , Rumen , Amino Acids/metabolism , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Fermentation , Nucleotides/metabolism , Prevotella/metabolism , Rumen/chemistry , Silage , Vitamins/metabolism , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...